Uniform Bounds for Weil-petersson Curvatures

نویسندگان

  • MICHAEL WOLF
  • YUNHUI WU
چکیده

We find bounds for Weil-Petersson holomorphic sectional curvature, and the Weil-Petersson curvature operator in several regimes, that do not depend on the topology of the underlying surface. Among other results, we show that the minimal (most negative) eigenvalue of the curvature operator at any point in the Teichmüller space Teich(Sg) of a closed surface Sg of genus g is uniformly bounded away from zero. Restricting to a thick part of Teich(Sg), we show that the minimal eigenvalue is uniformly bounded below by an explicit constant which does not depend on the topology of the surface but only on the given bound on injectivity radius. We also show that the minimal Weil-Petersson holomorphic sectional curvature of a sufficiently thick hyperbolic surface is comparable to −1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Weil-petersson Curvature of the Moduli Space of Riemann Surfaces of Large Genus

Let Sg be a closed surface of genus g and Mg be the moduli space of Sg endowed with the Weil-Petersson metric. In this paper we investigate the Weil-Petersson curvatures of Mg for large genus g. First, we study the asymptotic behavior of the extremal Weil-Petersson holomorphic sectional curvatures at certain thick surfaces in Mg as g → ∞. Then we prove two curvature properties on the whole spac...

متن کامل

On Asymptotic Weil-Petersson Geometry of Teichmüller Space of Riemann Surfaces

We investigate the asymptotic behavior of curvatures of the Weil-Petersson metric in Teichmüller space. We use a pointwise curvature estimate to study directions, in the tangent space, of extremely negative curvature and directions of asymptotically zero curvatures.

متن کامل

Average Curvatures of Weil-Petersson Geodesics In Teichmüller Space

Every point in Teichmüller space is a hyperbolic metric on a given Riemann surface, therefore, a Weil-Petersson geodesic in Teichmüller space can be viewed as a 3-manifold. We investigate the sectional curvatures of this 3-manifold, with a natural metric. We obtain explicit formulas for the curvature tensors of this metric, and show that the “average”s of them are zero, and hence the geometry o...

متن کامل

Weil-petersson Metric on the Universal Teichmüller Space I: Curvature Properties and Chern Forms

We prove that the universal Teichmüller space T (1) carries a new structure of a complex Hilbert manifold. We show that the connected component of the identity of T (1), the Hilbert submanifold T0(1), is a topological group. We define a Weil-Petersson metric on T (1) by Hilbert space inner products on tangent spaces, compute its Riemann curvature tensor, and show that T (1) is a Kähler -Einstei...

متن کامل

Cusp Excursions of Random Geodesics in Weil-petersson Type Metrics

We consider Weil-Petersson type incomplete metrics on orientable surfaces of finite type. We analyse cusp excursions of random geodesics proving bounds for maximal excursions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015